Mark Scheme (Results) Summer 2008 **GCE** GCE Mathematics (6689/01) ## June 2008 6689 Decision Mathematics D1 Mark Scheme | Question
Number | Scheme | Marks | |--------------------|---|--------------| | Q1 (a) | $\frac{502}{100} = 5.02$ so 6 tapes. | M1
A1 (2) | | (b) | Bin 1: 29, 52 Bin 5: 47, 38
Bin 2: 73 Bin 6: 61
Bin 3: 87 Bin 7: 41
Bin 4: 74 | M1 A1 A1 (3) | | (c) | Bin 1: 87 Bin 4: 61, 38
Bin 2: 74 Bin 5: 52, 47
Bin 3: 73 Bin 6: 41, 29 | M1
A1 | | | Notes: (a) 1M1: (502 ± 40) ÷ 100 (maybe implicit) 1A1: cao 6 tapes (b) 1M1: Bin 1 correct and at least 8 values put in bins 1A1: Condone one error, (e.g. extra, omission, 'balanced'swap). 2A1: All correct (c) 1M1: Bin 1 correct and at least 8 values put in bins 1A1: Condone one error, (e.g. extra, omission, 'balanced'swap). 2A1: All correct | Total 8 | | Question | Scheme | Marks | | | | | | |-----------|---|----------------|--|--|--|--|--| | Number | | | | | | | | | Q2
(a) | G-5=W-3 change status $G=5-W=3$ | | | | | | | | (b) | A - no match
E = 2
G = 5
R = 4
W = 3 | A1 (1) | | | | | | | (c) | e.g. R is the only person who can do 1 and the only person who can do 4 | B 2, 1, 0 (2) | | | | | | | (d) | A-2 = E-3 = W-4 = R-1
change status $A=2-E=3-W=4-R=1$ | M1 A1 | | | | | | | | A = 2
E = 3
G = 5
R = 1
W = 4 | A1 (3) Total 8 | | | | | | | | Notes: (a) 1M1: Path from G to 3 1A1: CAO including change status (stated or shown), chosen path clear. (b) 2A1: CAO must ft from stated path (c) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) but all nodes refered to must be correct. 2B1: Good, clear, correct answer. (d) 1M1: Path from A to 1 1A1: CAO including change status (stated or shown) but don't penalise twice. Chosen path clear. 1A1: CAO must ft from stated path | | | | | | | | | Misread (remove last two A or B marks if earned.) $A-2=E-3$ c.s. $A=2-E=3$ Matching $A=2$, $E=3$, $R=4$ $W=5$ Then $G-5=W-4=R-1$ c.s. $G=5-W=4-R=1$ Matching $A=2$, $E=3$, $G=5$, $R=1$, $W=4$ | | | | | | | | Question
Number | | Scheme | Marks | |--------------------|-----|---|----------------------------| | Q3 | (a) | D 4 8 11 G 6 19 8 19 19 17 H 8 36 | M1 | | | | A 1 0 6 C 2 6 14 E 5 18 19 38 37 36 0 6 14 F 7 24 1 9 48 | A1ft | | | | 7 18 25 24 25 49 48 Route: ADGHI Length: 48 (km) | A1ft A1 A1ft (5) | | (1 | b) | Odd vertices are A and H
Attempt to find shortest route from A to $H = ADGH$
New length: $197 + 36 = 233$
Route: e.g. ADGHGDACEDHIFHEFBA (18) | B1
M1
A1ft
A1 (4) | | | | Notes: (a) 1M1: Smaller number replacing larger number in the working values at E or F or H or I. (generous – give bod) 1A1: All values in boxes A to E and G correct 2A1ft: All values in boxes F, H and I correct (ft). Penalise order of labelling just once. 3A1: CAO (not ft) 4A1ft: Follow through from their I value, condone lack of units here. | Total 9 | | | | (b) 1B1: A and H identified in some way – allow recovery from M mark. 1M1: Accept, if correct, path, or its length. Accept attempt if finding shortest. 1A1ft: 197 + their shortest A to H (36) 2A1: A correct route. | | | Question
Number | Scheme | Marks | |--------------------|--|-------------------| | Q4 (a) | e.g. Prims starts with any vertex, Kruskal starts with the shortest arc. It is not necessary to check for cycles when using Prim. Prims adds nodes to the growing tree, Kruskal adds arcs. The tree 'grows' in a connected fashion when using Prim. Prim can be used when data in a matrix form. Other correct statements also get credit. | B 2, 1, 0 (2) | | (b)(i) | e.g. AC, CF, FD, DE, DG, AB. | M1, A1,
A1 (3) | | (ii) | CF, DE, DF, not CD, not EF, DG, not FG, not EG, AC, not AD, AB. [18, 19, 20, not 21, not 21, 22, not 23, not 24, 25, not 26, 27] | M1, A1,
A1 (3) | | | Notes: (a) 1B1: Generous one correct difference. If bod give B1 2B1: Generous two distinct, correct differences. (b) 1M1: Prim's algorithm – first three arcs chosen correctly, in order, or first four nodes chosen correctly, in order. 1A1: First five arcs chosen correctly; all 7 nodes chosen correctly, in order. 2A1: All correct and arcs chosen in correct order. 2M1: Kruskal's algorithm – first 4 arcs selected chosen correctly. 1A1: All six non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time. | Total 8 | | Question | Scheme | Marks | |----------|---|------------| | Number | | | | Q5 (a) | $x = 9, \ y = 11$ | B1,B1 (2) | | (b) | AC DC DT ET | B2,1,0 (2) | | (c) | 36 | B1 (1) | | (d) | $C_1 = 49, C_2 = 48, C_3 = 39$ | B1,B1,B1 | | (e) | e.g. SAECT | B1 (3) | | (f) | maximum flow = minimum cut
cut through DT, DC, AC and AE | M1 A1 (2) | | | | Total 11 | | | Notes: (a) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (b) 1B1: correct (condone one error – omission or extra) 2B1: all correct (no omissions or extras) (c) 1B1: cao (d) 1B1: cao 2B1: cao 3B1: cao (e) 1B1: A correct route (flow value of 1 given) (f) 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four. | | | Question
Number | | | Ç | Scheme | | | | | | Marks | |--------------------|----------|-----------|--|----------------|----------|---------|----------------|-------|----------------------------------|------------------| | Q6 | | | | | | | | | | | | | b.v | X | у | Z | R | S | | | | | | (a) | r | 4 | $\frac{7}{3}$ | $\frac{5}{2}$ | 1 | 0 | | | | | | | S | 1 | | 0 | 0 | 1 | | | | | | | t | 4 | 2 | 2 | 0 | 0 | | | | | | | P | -5 | $-\frac{7}{2}$ | -4 | 0 | 0 | 0 | 0 | | | | | | | | I | | 1 | | | | | | | b.v | X | у | Z | R | S | t | value | Row ops | 3.61.4.1 | | | r | 0 | $\frac{1}{3}$ | $\frac{1}{2}$ | 1 | 0 | -1 | 4 | R ₁ - 4R ₃ | M1 A1 | | | S | 0 | $\frac{5}{2}$ | $-\frac{1}{2}$ | 0 | 1 | $-\frac{1}{4}$ | 1 | R_2-R_3 | M1
A1ft A1 | | | X | 1 | $ \begin{array}{r} \frac{1}{3} \\ \frac{5}{2} \\ \frac{1}{2} \end{array} $ | $\frac{1}{2}$ | 0 | 0 | $\frac{1}{4}$ | 15 | R ₃ ÷4 | | | | P | 0 | -1 | $-\frac{3}{2}$ | 0 | 0 | <u>5</u>
4 | 75 | R ₄ +5R ₃ | | | | | | | | | | | | | | | | b.v | X | у | Z | R | S | t | value | Row ops | | | | Z | 0 | $\frac{y}{\frac{2}{3}}$ | 1 | 2 | 0 | -2 | 8 | $R_1 \div \frac{1}{2}$ | M1 A1ft | | | S | 0 | $\frac{17}{6}$ | 0 | 1 | 1 | $-\frac{5}{4}$ | 5 | $R_2 + \frac{1}{2}R_1$ | M1 A1 | | | X | 1 | $\frac{1}{6}$ | 0 | -1 | 0 | $\frac{5}{4}$ | 11 | $R_3 - \frac{1}{2}R_1$ | (9) | | | P | 0 | 0 | 0 | 3 | 0 | $-\frac{7}{4}$ | 87 | $R_4 + \frac{3}{2}R_1$ | | | (b) | There is | still a n | egative 1 | number : | in the p | rofit r | ow. | | | B1 (1) Total 10 | | | | | | | | | | | | | | Question
Number | Scheme | Marks | |--------------------|---|--| | Q7 (a) | v = 16 $w = 25$ $x = 23$ $y = 20$ $z = 8$ | B3,2,1,0
(3) | | (b) | BCGLMQ | B1 (1) | | (c) | Float on $H = 23ft - 19 - 3 = 1$
Float on $J = 25 - 22 - 2 = 1$ | B1
B1 (2) | | (d) | | | | (e)
(f) | E has one day of float, so project can still be completed on time. e.g • At time 23 ½ activities L, I, J and N must be taking place • At time 13 ½ or 14 ½ activities C, D, E and F must be taking place So 4 workers needed. | M1 A1 A1 A1 (4) B2,1,0 (2) B2,1,0 (2) Total 14 | | Question
Number | Scheme | Marks | |--------------------|---|---------------------------------| | Q8 | Maximise (P=) $0.2 a + 0.15 b$ or $20 a + 15 b$ o.e. | B1 B1 (2) | | | Subject to $a+b \le 800$ $a \ge 2b$ $50 \le b \le 100$ $a \ge 0$ | B1
B2,1,0
B1
B1
(5) | | | Notes: 1B1: 'Maximise' 2B1: ratio of coefficients correct 3B1: cao 4B1: ratio of coefficients of a and b correct. 5B1: inequality correct way round i.e. □ a ≥ □ b 6B1: cao accept < − accept two separate inequalities here 7B1: cao • Penalise < and > only once with last B mark earned • Be generous on letters a, b, A, B, x, y etc and mixed, but remove last B mark earned if inconsistent or 3 letters in the ones marked. | |